8 research outputs found

    Conditional Progressive Generative Adversarial Network for satellite image generation

    Full text link
    Image generation and image completion are rapidly evolving fields, thanks to machine learning algorithms that are able to realistically replace missing pixels. However, generating large high resolution images, with a large level of details, presents important computational challenges. In this work, we formulate the image generation task as completion of an image where one out of three corners is missing. We then extend this approach to iteratively build larger images with the same level of detail. Our goal is to obtain a scalable methodology to generate high resolution samples typically found in satellite imagery data sets. We introduce a conditional progressive Generative Adversarial Networks (GAN), that generates the missing tile in an image, using as input three initial adjacent tiles encoded in a latent vector by a Wasserstein auto-encoder. We focus on a set of images used by the United Nations Satellite Centre (UNOSAT) to train flood detection tools, and validate the quality of synthetic images in a realistic setup.Comment: Published at the SyntheticData4ML Neurips worksho

    PulseSatellite: A tool using human-AI feedback loops for satellite image analysis in humanitarian contexts

    Full text link
    Humanitarian response to natural disasters and conflicts can be assisted by satellite image analysis. In a humanitarian context, very specific satellite image analysis tasks must be done accurately and in a timely manner to provide operational support. We present PulseSatellite, a collaborative satellite image analysis tool which leverages neural network models that can be retrained on-the fly and adapted to specific humanitarian contexts and geographies. We present two case studies, in mapping shelters and floods respectively, that illustrate the capabilities of PulseSatellite.Comment: 2 pages, 2 figure

    TriggerCit: Early Flood Alerting using Twitter and Geolocation - A Comparison with Alternative Sources

    Get PDF
    Rapid impact assessment in the immediate aftermath of a natural disaster is essential to provide adequate information to international organisations, local authorities, and first responders. Social media can support emergency response with evidence-based content posted by citizens and organisations during ongoing events. In the paper, we propose TriggerCit: an early flood alerting tool with a multilanguage approach focused on timeliness and geolocation. The paper focuses on assessing the reliability of the approach as a triggering system, comparing it with alternative sources for alerts, and evaluating the quality and amount of complementary information gathered. Geolocated visual evidence extracted from Twitter by TriggerCit was analysed in two case studies on floods in Thailand and Nepal in 2021.Comment: 12 pages Keywords Social Media, Disaster management, Early Alertin

    Deep Learning for Rapid Landslide Detection using Synthetic Aperture Radar (SAR) Datacubes

    Full text link
    With climate change predicted to increase the likelihood of landslide events, there is a growing need for rapid landslide detection technologies that help inform emergency responses. Synthetic Aperture Radar (SAR) is a remote sensing technique that can provide measurements of affected areas independent of weather or lighting conditions. Usage of SAR, however, is hindered by domain knowledge that is necessary for the pre-processing steps and its interpretation requires expert knowledge. We provide simplified, pre-processed, machine-learning ready SAR datacubes for four globally located landslide events obtained from several Sentinel-1 satellite passes before and after a landslide triggering event together with segmentation maps of the landslides. From this dataset, using the Hokkaido, Japan datacube, we study the feasibility of SAR-based landslide detection with supervised deep learning (DL). Our results demonstrate that DL models can be used to detect landslides from SAR data, achieving an Area under the Precision-Recall curve exceeding 0.7. We find that additional satellite visits enhance detection performance, but that early detection is possible when SAR data is combined with terrain information from a digital elevation model. This can be especially useful for time-critical emergency interventions. Code is made publicly available at https://github.com/iprapas/landslide-sar-unet.Comment: Accepted in the NeurIPS 2022 workshop on Tackling Climate Change with Machine Learning. Authors Vanessa Boehm, Wei Ji Leong, Ragini Bal Mahesh, Ioannis Prapas contributed equally as researchers for the Frontier Development Lab (FDL) 202

    CERN openlab Technical Workshop

    No full text

    Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery

    Get PDF
    Rapid response to natural hazards, such as floods, is essential to mitigate loss of life and the reduction of suffering. For emergency response teams, access to timely and accurate data is essential. Satellite imagery offers a rich source of information which can be analysed to help determine regions affected by a disaster. Much remote sensing flood analysis is semi-automated, with time consuming manual components requiring hours to complete. In this study, we present a fully automated approach to the rapid flood mapping currently carried out by many non-governmental, national and international organisations. We design a Convolutional Neural Network (CNN) based method which isolates the flooded pixels in freely available Copernicus Sentinel-1 Synthetic Aperture Radar (SAR) imagery, requiring no optical bands and minimal pre-processing. We test a variety of CNN architectures and train our models on flood masks generated using a combination of classical semi-automated techniques and extensive manual cleaning and visual inspection. Our methodology reduces the time required to develop a flood map by 80%, while achieving strong performance over a wide range of locations and environmental conditions. Given the open-source data and the minimal image cleaning required, this methodology can also be integrated into end-to-end pipelines for more timely and continuous flood monitoring

    Dual-Tasks Siamese Transformer Framework for Building Damage Assessment

    Full text link
    Accurate and fine-grained information about the extent of damage to buildings is essential for humanitarian relief and disaster response. However, as the most commonly used architecture in remote sensing interpretation tasks, Convolutional Neural Networks (CNNs) have limited ability to model the non-local relationship between pixels. Recently, Transformer architecture first proposed for modeling long-range dependency in natural language processing has shown promising results in computer vision tasks. Considering the frontier advances of Transformer architecture in the computer vision field, in this paper, we present the first attempt at designing a Transformer-based damage assessment architecture (DamFormer). In DamFormer, a siamese Transformer encoder is first constructed to extract non-local and representative deep features from input multitemporal image-pairs. Then, a multitemporal fusion module is designed to fuse information for downstream tasks. Finally, a lightweight dual-tasks decoder aggregates multi-level features for final prediction. To the best of our knowledge, it is the first time that such a deep Transformer-based network is proposed for multitemporal remote sensing interpretation tasks. The experimental results on the large-scale damage assessment dataset xBD demonstrate the potential of the Transformer-based architecture.Comment: IGARSS 202
    corecore